
CSCI 210: Computer Architecture

Lecture 34: Caches II

Stephen Checkoway

Oberlin College

May 16, 2022

Slides from Cynthia Taylor

1

Announcements

• Problem set 11 due Friday

• Problem set 12 will be due a week from Thursday (the last day

of instruction this semester)

• Office hours Tuesday 13:30–14:30

Taking Advantage of Locality

• Store everything on disk

• Copy recently accessed (and

nearby) items from disk to smaller

main memory

• Copy more recently accessed (and

nearby) items from main memory

to cache

CPU

on-chip cache(s)

off-chip cache

main memory

disk

We know SRAM is very fast, expensive ($/GB), and

small. We also know disks are slow, inexpensive

($/GB), and large. Which statement best describes

the role of cache when it works.

Selection Role of caching

A Locality allows us to keep frequently touched data in

SRAM.

B Locality allows us the illusion of memory as fast as

SRAM but as large as a disk.

C SRAM is too expensive to make large – so it must be

small and caching helps use it well.

D Disks are too slow – we have to have something

faster for our processor to access.

E None of these accurately describes the role of cache.

Memory Access

• Use main memory

addresses

• When looking for data,

check

– 1. cache

– 2. main memory

– 3. disk

CPU

on-chip cache(s)

off-chip cache

main memory

disk

Memory Hierarchy Terms

• Block: unit of copying

– May be multiple words

– On x86-64, a block is 64 bytes

• Cache Hit: data in the cache

– Hit ratio: hits/accesses

• Cache Miss: data not in the cache

– Time taken: miss penalty

– Miss ratio: misses/accesses

= 1 – hit ratio

High-level cache strategy

• Divide all of memory into

consecuOve blocks

• Copy data (memory ↔

cache) one block (e.g., 64

bytes) at a Ome

• To access data, check if it

exists in the cache before

checking memory

Memory

32 A0 5C …

00 00 00 …

00000000

00000020

00000040

00000060

00000080

000000A0

000000C0

000000E0

00000100

00000120

…

FFFFFFE0

Data

FE FF 3C …

32 A0 5C …

00 00 00 …

Memory addresses, block addresses, offsets

• Imagine we have blocks of size 32 bytes (not bits!)

• Every byte of memory can be specified by giving

– A (32 – 5)-bit block address (in purple)

– A 5-bit offset into the block (in green)

• To read a byte of memory

– find the appropriate 32-byte block in either cache or memory using

the block address

– Use the offset to select the appropriate byte from the block

0 0 0 1 0 1 0 1 1 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 0 1 1

With a block size of 64 bytes, how many bits is the

block address? How many bits is the offset?

(Assume 32-bit addresses.)

A. Block address size is 32 – 4 = 28 bits; offset size is 4 bits

B. Block address size is 32 – 5 = 27 bits; offset size is 5 bits

C. Block address size is 32 – 6 = 26 bits; offset size is 6 bits

D. Block address size is 32 – 5 = 27 bits; offset size is 4 bits

E. Block address size is 32 – 5 = 27 bits; offset size is 6 bits

Number of offset bits

• Block sizes are powers of 2

• For a block size of 2m bytes, the number of offset bits is m

– 16-byte block size: 4 offset bits

– 32-byte block size: 5 offset bits

– 64-byte block size: 6 offset bits

Block address Offset

Where is a block of memory stored in cache?

• Given a memory address, we

can divide it into a block

address and an offset

• Where in cache is the block

stored?

• Basic problem: Cache is

smaller than main memory

Memory

32 A0 5C …

00 00 00 …

00000000

00000020

00000040

00000060

00000080

000000A0

000000C0

000000E0

00000100

00000120

…

FFFFFFE0

Data

FE FF 3C …

32 A0 5C …

00 00 00 …

Direct-mapped cache

• Block location in cache determined by block address

• Direct mapped: only one possible location for a given block address

– Index = (Block address) modulo (#Blocks in cache)

• #Blocks is a power of 2

• Direct-mapped cache is

essentially an array of blocks

• Use low-order address bits

of block address to index it

Problem: Collisions

• Many block addresses map
to the same cache location

• How do we know which
particular block is stored in
a cache location?

– Store block address as well

as the data

– Actually, only need the high-

order bits

– Called the tag

Memory

32 A0 5C …

7F 40 61 …

00000000

00000020

00000040

00000060

00000080

000000A0

000000C0

000000E0

00000100

00000120

…

FFFFFFE0

Data

FE FF 3C …

32 A0 5C …

00 00 00 …

Memory addresses, block addresses, offsets

• Block size of 32 bytes (not bits!)

• 8-block cache (this is purely an example!)

• Each address

– A (32 – 5)-bit block address (in purple and blue)

– A 5-bit offset into the block (in green)

• Block address can be divided into

– A (32 – 3 – 5)-bit tag (purple)

– A 3-bit cache index (blue)

0 0 0 1 0 1 0 1 1 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 0 1 1

If we have a block size of 64-bytes and our cache

holds 256 entries how large are the tag, index, and

offset?

Tag size (bits) Index size (bits) Offset size (bits)

A 32 – 3 – 8 3 8

B 32 – 3 – 6 3 6

C 32 – 6 – 8 6 8

D 32 – 8 – 6 8 6

E 32 – 8 – 8 8 8

tag index offset

Cache layout (so far)

• Tag stores high-order

bits of address

• Data stores all of the

data for the block (e.g.,

32 bytes)

Tag Data

000042 FE FF 3C 7F …

001234 32 A0 5C 21 …

000F3C 00 00 00 00 …

High-level cache strategy

• Divide all of memory into
consecuOve blocks

• Copy data (memory ↔
cache) one block at a Ome

• Cache lookup:

– Get the index of the block in
the cache from the address

– Compare the tag from the
address with the tag in the
cache

Mem

32 …

7F …

00000000

00000020

00000040

00000060

00000080

000000A0

000000C0

000000E0

00000100

00000120

…

FFFFFFE0

Tag Data

000042 FE FF 3C …

000000 32 A0 5C …

000F3C 00 00 00 …

000

001

010

011

100

101

110

111

How do we know if it’s in the cache?

• What if there is no data in a location?

– Valid bit: 1 = present, 0 = not present

– Initially 0

Direct-mapped cache layout

• Valid stores 1 if data is

present in cache

• Tag stores high-order

bits of address

• Data stores all of the

data for the block (e.g.,

32 bytes)

Valid Tag Data

1 000042 FE FF 3C 7F …

0

1 001234 32 A0 5C 21 …

0

0

1 000F3C 00 00 00 00 …

0

0

High-level cache strategy

• Divide all of memory into
consecuOve blocks

• Copy data (memory ↔
cache) one block at a Ome

• Cache lookup:

– Get the index of the block in
the cache from the address

– Check the valid bit; compare
the tag to the address

Mem

00000000

00000020

00000040

00000060

00000080

000000A0

000000C0

000000E0

00000100

00000120

…

FFFFFFE0

V Tag Data

1 000042 FE FF 3C …

0

1 001234 32 A0 5C …

0

0

1 000F3C 00 00 00 …

0

0

Example

• 64 blocks, 16 bytes/block

– To what cache index does address 0x1234 map?

• Block address = ë0x1234/16û = 0x123

• Index = 0x123 modulo 64 = 0x23

• No actual math required: just select appropriate bits from

address!

Tag Index Offset

03491031

4 bits6 bits22 bits

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0

Memory access

Direct Mapped Cache

tag data

Four blocks, each block holds four bytes

00 00 01 00

00 00 10 00

00 00 11 00

00 00 01 00

00 00 10 00

00 01 01 00

00 00 01 00

00 00 10 00

00 01 01 00

00 01 10 00

00 00 11 00

00 00 10 00

00 00 01 00

M

M

M

H

H

M

H

H

H

M

M

H

M

M

M

M

H

H

M

M

H

H

M

H

H

H

M

M

M

H

H

M

M

H

M

M

H

M

M

M

H

M

H

H

M

H

H

H

M

H

H

M

A B C D E None are correctbyte addresses

00

01

10

11

data

x

y

z

x

y

w

x

y

w

u

z

y

x

How do we know how big a block in cache is?

A. Each block in the cache stores its size

B. The length of the tag in the cache determines the block size

C. The most significant bits of the address determine the block

size

D. The least significant bits of the address determine the block

size

E. For any given cache, the block size is constant

Reading

• Next lecture: More Caches!

– Section 6.4

• Problem Set 11 due Friday

25

